1 solutions
-
0
考虑到
所以
$$\sum_{1 \leq i < j \leq n} (a_i + a_j)^2 = \sum_{1 \leq i < j \leq n} (a_i^2 + a_j^2 + 2a_ia_j) $$我们令
所以原来的式子
$$= \sum_{1 \leq i < j \leq n} (a_i^2 + a_j^2 + 2a_ia_j) $$$$= \sum_{i = 1}^n(s2[i - 1] + (i - 1) \times a_i^2 + 2\times a_i \times s1[i - 1]) $$故最后时间复杂度
- 1
Information
- ID
- 660
- Time
- 1000ms
- Memory
- 256MiB
- Difficulty
- 2
- Tags
- (None)
- # Submissions
- 109
- Accepted
- 7
- Uploaded By